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Leveraging AI in the 
vehicle design process

Using machine learning to complement the human mind in 
improving product engineering

Executive summary
Artificial intelligence (AI) is not a regression model of predicted values and measured 
results. However, it includes aspects of it. If the technology can be understood and 
applied to its full potential, it promises to multiply human capacity and accelerate the 
development and discovery of new technologies. To support this idea, this white paper 
proposes a framework for applying AI to the vehicle development process.

Our 3D framework: dull, data rich and decision support is based on combining the 
strengths of the human mind with a machine to turn the increasingly complex world of 
today’s engineering into an advantage. We share specific examples for each case, 
illustrating where AI applies how it can be implemented.
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The 1997 victory of IBM’s supercomputer, Deep Blue, 

over then-world chess champion Gary Kasparov, 

brought the power and maturity of AI into main-

stream consciousness. This was the culmination of a 

century-long work on AI, including works by Alan 

Turing, such as, “Computing Machinery and 

Intelligence,” published in 1950, a seminal paper 

that proposed a test for intelligent machines.

Since Deep Blue’s victory, the use of AI has become 

pervasive but inconspicuous. The United States 

Postal Service uses AI to recognize hand-written 

postal codes to sort letters. Search engines use it to 

return data relevant to you.

But the application of AI has been sporadic in auto-

motive companies. It has come down to the indi-

vidual team’s familiarity with the tools and concepts 

of AI.

We provide a practical framework for thinking about 

problems that should be solved with AI so we can 

leverage its capabilities to accelerate the discovery 

of new technologies.

Introduction

Figure 1. A computer beat the ruling world chess champion Gary Kasparov in 1997.
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You might ask, “Why bother with AI in the first 

place? The current process has worked well in 

designing world-class cars for several decades, and 

you already have some brilliant people doing the 

design work. The computers couldn’t possibly 

replace them.”

That is true.

But we propose that AI can provide a head start in 

subsequent designs by leveraging historical data.

We propose that AI can catch mistakes that will 

likely go unnoticed until it is too late.

We propose that AI can show you a much quicker 

way of doing things, be it analysis, processing data 

or coming up with a robust answer.

Now is the perfect time to take advantage of AI 

because of two critical enablers in the field.

Enabler 1: big data

Big data – extremely large and complex data sets – 

has become prevalent worldwide. We generate 

terabytes of data weekly from computer-aided 

engineering (CAE) solvers crunching equations and 

data collected in test cells.

Ninety percent of this data is discarded mainly 

because we don’t have the time to process data that 

we don’t need immediately, even though it might 

contain valuable insights for the future.

AI is exponentially better at being used to process 

large amounts of data and identify and extract 

patterns efficiently, some of which our analog 

brains will never think of no matter how much time 

we spend poring through the data. So let AI tackle 

the big data, do the pattern recognition and develop 

unique connections that our analog brains can pick 

up, understand and solve.

Enabler 2: hardware capacity and processing 

power

You no longer need a computer science degree to 

run AI due to the rapid rise in the availability of 

inexpensive hardware computing capabilities and 

software tools.

Figure 2. Using Simcenter STAR-CCM+ delivers faster turn-
around times at lower hardware investment costs.

The prevalence of high-performance computing and 

graphics processing units (GPUs) in gaming and 

consumer industries has decreased their price. 

Recent performance comparison of running indus-

trial-grade external aerodynamics (see figure 2 for 

an example of computation) on GPUs has shown a 

160X improvement in speed and a 90 percent reduc-

tion in power consumption (see figure 3 for GPU 

performance comparison).

1. AI is worth the bother

Figure 3. GPU performance comparison.
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In our discussion, we will use machine 

learning (ML) methods, a subset of AI.

Supervised learning

Supervised learning is a method where 

the correct answer is given to the AI 

algorithm. The algorithm is told what the 

inputs are and what the correct answer 

is supposed to be, as shown in figure 4. 

The algorithm is then trained on a set of 

data with the inputs and outputs before 

it makes predictions on its own based on 

never-seen-before input channels.

Figure 4. In supervised learning, the target variable Y  
supervises the modeling process.

An example of supervised learning is a 

vehicle identifying stop signs. The raw data from the 

cameras are labeled as inputs, and the final correct 

answer (a stop sign) is marked as an output.

Therefore, supervised learning is said to use labeled 

data.

Unsupervised learning

Unsupervised learning is a method where no final 

answer is given to the algorithm. Instead, we ask 

the algorithm to process the data and find inter-

esting trends and patterns. Because the data is not 

labeled, human intervention is significantly lower.

According to IBM Cloud Education,1 there are three 

ideal applications for unsupervised learning – clus-

tering, association and dimensionality reduction.

Clustering algorithms determine the highlighting 

patterns and commonality in the data set, which 

might not have been apparent to the human mind 

or determined from classical statistical methods.

Association algorithms use the data of two variables 

to find a relationship. A Netflix recommendation 

engine such as, “Customers who watched this might 

also like…” is an example of association analysis.

Dimensionality reduction cuts down a large set of 

data to a manageable size without affecting the 

trends and nuances contained in the data. This is 

achieved by reducing the number of random vari-

ables in the problem while maintaining most of the 

meaningful properties in the original data.

The earlier example of chess illustrates the power of 

unsupervised learning. The moves that beat 

Kasparov in that seminal match two decades ago are 

now considered simple, intermediate moves by 

today’s standards. The chess game has come a long 

way since the advent of AI by identifying moves and 

patterns experienced grandmasters had not thought 

of. The chess grandmasters of today stand on the 

shoulders of millions of chess games that AI 

computers play to discover new moves.

We can do the same with our product development 

process and the terabytes of data we generate.

We can learn new but counterintuitive ways of 

doing things.

2. A short primer on AI terminology

Figure 5. Common methods of unsupervised learning.
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We propose the following as a framework to apply 

machine learning:

Dull, data rich and decision support identify specific 

scenarios where the machine is superior to the 

human mind at the given task and can complement 

the human mind to achieve far greater output.

Dull activities

Repetitive and tedious work is an unfortunate reality 

in today’s engineering design process. These repeti-

tive activities are dull, require little engagement 

with the engineer’s mind and take a long time to 

execute. Examples include reviewing a large dataset 

for coherence before using it or preparing comput-

er-aided design (CAD) geometry for analysis. A 

manual procedure delays the design process and 

causes high costs as expensive labor is wasted on 

unskilled tasks. Moreover, errors creep in due to the 

repetitive nature of the work.

Here is an example where we applied supervised 

learning to automate and reduce four-day CAD 

geometry cleanup work to half a day.

Using CAD geometry cleanup for CAE analysis

The raw CAD geometry created by the designer is 

rarely ready to be meshed and analyzed immedi-

ately. There are gaps where the surfaces meet, 

hollow 2D surfaces instead of 3D solid objects and 

the presence of many small parts, such as bolts and 

fasteners, must be removed for better mesh 

generation.

We applied ML to identify nuts and bolts automati-

cally. Geometry data from past vehicle programs 

were used to train the ML algorithm on the same 

components that needed to be identified, tagged 

and removed in the geometry cleanup process.

Once trained, the ML algorithm could be used to 

process vehicle CAD geometry that it had never 

seen before and automatically identify the compo-

nents for deletion. Figure 6 shows the outcome of 

the ML algorithm that identified and tagged the 

nuts and bolts for deletion.

In this instance, the engineer still reviewed the tags 

and verified the identification was correct and 

complete. This expert-in-the-loop process ensures a 

high quality of work while automating the tedious, 

laborious process of CAD geometry cleanup.

3. �The 3Ds framework: dull, data rich 
and decision support

Figure 6. The CAD part recognition workflow for identifying components.  
Note that for the current example the dataset came from two cars. 

Figure 7. The ML algorithm automatically identifies and tags 
the nuts and bolts for deletion, even if it has not seen this 
geometry before.
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Similar supervised learning can also identify and 

populate the missing material properties in CAD.

Data-rich environments

Data rich might sound like an odd criterion.

Data rich is not an application but rather a neces-

sary condition for ML. Applying ML in data-rich 

environments is akin to looking for a life where 

there is water. Here we don’t start with a problem to 

solve but rather reverse the thinking and ask, ”What 

can I do or learn with all this data?”

Reversing the thinking this way uncovers numerous 

applications.

We can leverage supervised and unsupervised 

learning methods to extract insights from these 

large datasets generated from CAE and testing.

Leveraging large sets of CAE data: reduced 

order models

A reduced order model (ROM) is a simplification of  

a high-fidelity static or dynamical model that 

preserves essential behavior and dominant effects 

for the purpose of reducing solution time or storage 

capacity required for the more complex computa-

tional model (for example, a 3D finite element 

model). Compared to data-rich environments, ROMs 

reduce the number of variables in the systems while 

maintaining the accuracy of the original complex 

computational model. As such, ROMs are much 

faster and more straightforward. A popular approach 

to generating a ROM is using ML trained on results 

from a high-fidelity CAE analysis.

The case discussed here applied ROM to predict the 

surface temperature distribution inside a vehicle 

cabin. A simulation results database was generated 

by running several high-fidelity computational fluid 

dynamics (CFD) simulations in a batch run for 

various operating conditions and inputs.

The team tested the accuracy of the ROM trained on 

500, 1,000, 1,500 and 2,000 data samples. The ROM 

model accurately predicted even the smallest 

dataset, as shown in figure 8.

The ML model only takes a few seconds to predict 

temperatures compared to several hours for a 

high-fidelity CFD. This ROM can be used for predic-

tions if the cabin geometry does not change signifi-

cantly. The figure below compares the various ML 

models with measurement data.

Figure 9. Temperature distribution comparison in the cabin 
from each of the trained ROM models.

Once a ROM has been generated, it can then be 

integrated into a system model (for example, 1D A/C 

and heat pump model) to replicate accurate 3D 

predictions of a CFD model at the speed of a 1D 

model. A complete drive-cycle analysis, multi-attri-

bute balancing or controls development can now be 

performed in a fraction of the time.

Training data 
set

Training 
time

Prediction 
error

E#1 500 CFD Sim. 3.08 hrs. 1.1232*10-4

E#2 1,000 CFD Sim. 4.25 hrs. 6.3939*10-5

E#3 1,500 CFD Sim. 5.40 hrs. 4.9629*10-5

E#4 2,000 CFD Sim. 6.46 hrs. 4.8784*10-5

Figure 8. Configuration variables and errors in reduced order model prediction for 
different sizes of training datasets.
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Leveraging test data. Part I: models of 

nonlinear subsystems

Let’s look at a scenario where test data is the 

source.

When ML is applied to test data it can be used to 

solve difficult simulation modeling problems, such 

as components with complex nonlinear 

characteristics.

Work from Nakatsugawa2 is on a self-switchable 

hydro mount component that has a nonlinear 

characteristic depending on amplitude and 

frequency. The hydro mount was excited by various 

constant-amplitude frequency sweeps, where the 

input displacement and output hydraulic force were 

measured. An ML model was then trained to predict 

the hydraulic force time series given the input 

displacement.

The ML model showed accuracies above 90 percent, 

which is comparable to or better than a phys-

ics-based model. Moreover, the data-driven hydro 

mount model was time-stable and could be directly 

integrated into a larger transient 1D CAE system 

model.

A similar approach from Gorgoretti3 on full-vehicle, 

test-track data was used to obtain a tire model that 

can be integrated into a 15 degrees-of-freedom 

(DOF) vehicle dynamics simulation model. The 

obtained tire models were similar (between 9 to 17 

percent mean absolute percentage error) to high-fi-

delity, physics-based tire models, which are 

obtained by more cumbersome conventional 

means; for instance, where specialized test infra-

structure (a dedicated tire test rig) and a specific 

test procedure are required.

In addition to saving modeling time, this approach 

removes the need for these additional specialized 

tests.

Leveraging test data. Part II: data-driven 

virtual sensors

In automotive proving ground testing, the vehicle is 

traditionally fitted with the many types of sensors 

needed to characterize the dynamic behavior of a 

new vehicle variant. The physical instruments used 

in these tests include some expensive and hard-to-

install sensors.

We used measurement data from cheaper and 

easier-to-install sensors to estimate the expected 

output from expensive and cumbersome-to-install 

physical sensors’ signals. This is achieved by training 

the ML algorithm on previous measurement data, 

where the prediction targets are the difficult sensors 

(for instance, wheel force transducers) and the 

inputs to the model are cheaper sensors (for 

instance, accelerometers and strain gauges).

Figure 10. Demonstrating the accuracy of a similar approach 
applied to “Simrod,” the Siemens demonstrator vehicle, to 
predict wheel center loads.

Automating benchmarking with unsupervised 

clustering of historical data

Many automotive original equipment manufacturers 

(OEMs) possess large historical databases of test 

measurements. Although these databases poten-

tially contain useful knowledge, in practice the 

engineers only analyze at most up to 30 percent of 

the total measured data due to lack of time, likely 

missing some essential insights in the data.

Moreover, these expert analyses are often reactive 

(for instance, responding after an issue has 

occurred).

Unsupervised clustering approaches can help by 

automatically identifying the most relevant clusters 

in the database, which can then be passed to the 

experts for more thorough analysis.
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In noise, vibration and harshness (NVH) bench-

marking, a hierarchical clustering approach was 

used to compare a vehicle fleet's road noise sound 

quality performance. The vehicles were driven on an 

automotive proving ground in coast-down test 

drives, and acoustic recordings were made inside 

the passenger cabin of each car.

The goal of the benchmarking was to understand 

the relative performance of the vehicles’ sound 

quality.

Manually assessing the data was difficult and 

time-consuming – it was possible if looking at just 

one metric, but it was near impossible when looking 

at 10 metrics simultaneously, even with conven-

tional statistical methods.

Applying an unsupervised clustering method to the 

problem was a natural choice.

By applying an agglomerative hierarchical clustering 

approach to the extracted sound quality metrics for 

each car and then visualizing the dendrogram, the 

engineer can get a global overview of trends in the 

acoustic data.

Figure 11. A dendrogram showing hierarchical clustering 
results for sounds recorded inside a fleet of 10 cars.

You notice that cars #4 and #7 were consistently 

clustered together in different measurements, 

indicating they have a comparable sound quality 

performance. However, different vehicle segments 

highlight a possible issue with one of them.

The research and development (R&D) engineer can 

then perform a more focused drill down into the 

individual sound quality metrics (see figure 11) for 

more detailed analyses to understand why these 

cars are different from the rest of the fleet and 

which sound quality aspect was the main cause of 

this difference.

Figure 12. Radar plot showing further drill down into sound 
quality metrics, with the trends of cars #4 and #7 highlighted.

Decision-support applications

The use of AI in decision support and diagnostic 

applications is a natural choice for two reasons.

First, human judgment is noisy. Daniel Kahneman 

highlights this in his book, Noise: A flaw in human 

judgment,5 that not only do people make different 

judgment calls on the same data, but the same 

person could also make different judgments in the 

morning and the afternoon on the same case. For 

example, a test subject assessing cabin comfort for 

an identical setting might make foreign judgments 

on comfort based on many factors unrelated to the 

vehicle cabin comfort (for example, sleep, health 

and whether the local sports team won or lost the 

previous night).5 A reduction in such variability will 

lead to more robust engineering.

Secondly, humans are not good at detecting anoma-

lies for many variables or if the trends take a long 

time to evolve – for example, a slow degradation in 

the performance of a part over several days oper-

ating in the field.  A manual inspection of the telem-

etry data might only detect the issue upon failure, 

but an AI algorithm can detect it much earlier.
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Let’s look at two examples where AI can help signifi-

cantly in decision-support applications.

Detecting faulty equipment

Work from Hendrickx6 provides a good example of 

applying machine learning for anomaly detection. 

Several electrical machines in a fleet are tested in a 

shared warehouse space. Electrical and vibration 

signatures are measured at various locations and 

used to train machine learning models to identify 

unsafe operational behavior of a specific 

component.

Using a similar approach, ML models can detect  

the slow degradation of batteries or critical  

components in vehicles in the field by analyzing  

the telemetry data.

Mitigating subjective evaluations

ML models can be suitable alternatives to many 

subjective evaluations of design performance.

Work by Lopes7 showed how trained neural 

networks predicted the passenger response to 

in-cabin noise. The goal of the neural net model was 

to establish a relation between objective and subjec-

tive psychoacoustic attributes. Such a capability 

enables complex models of human comfort levels 

and preferences to be built into the virtual proto-

typing framework.

Figure 13. Detecting faulty components using ML.

Figure 14. Process for developing a data and analysis pipeline for training a neural network for sound annoyance.
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With the rapid rise in the ability to generate data 

and the availability of artificial intelligence tools, 

the time is right to apply AI to the vehicle develop-

ment process.

Our framework for applying machine learning: dull, 

data rich and decision support identifies specific 

scenarios where the machine can complement the 

human mind to achieve speed and efficiency that is 

an order of magnitude higher than today.

Applying ML to tedious processes such as CAD 

preparation for external aerodynamics analysis 

shows an 8X acceleration, decreasing the time from 

four days to one-half day.

Generating reduced order models brings the high 

fidelity of a 3D CAE analysis to a fast-running 1D 

system model, enabling multi-attribute balancing, 

robust engineering and complex controls 

development.

When applied to test data, ML can create accurate 

subsystem models of complex nonlinear systems in 

a fraction of time without having to model the 

physics and fine-tune the model.

Finally, unsupervised learning brings insights into 

view that were previously missed, reducing the 

number of late design changes and failures during 

real-world operations.
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